西安大数据西安大数据

西安弈聪软件公司是西安专业的大数据技术服务公司,提供西安大数据技术应用平台开发,大数据算法关键技术开发研究,大数据采集清洗及大数据挖掘服务等。是西安大数据技术服务行业内的佼佼者。下面弈聪软件就和您进行一次大数据知识的普及和探讨。

什么是大数据?

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。

大数据的特点

一、数据体量巨大。百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。

二、数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。

三、处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。

四、价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

大数据的作用有什么用?

一、对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境。

二、大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

三、大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。

四、大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

大数据的处理过程

1.大数据采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

2. 大数据导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经?;岽锏桨僬?,甚至千兆级别。

3. 大数据统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4. 大数据挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

  • Premier de China ofrece rueda de prensa Spanish.xinhuanet.com 2018-12-11
  • 当你还在担心这些问题的时候,有个人的“自由发展”吗? 2018-12-11
  • 变相“现金贷”重出江湖 利率畸高个别超过1000% 2018-12-10
  • 十二生肖的起源与传说:你又知道多少? 2018-12-10
  • 加强党对反腐败工作的集中统一领导 2018-12-10
  • 回复@大雨582:所有的人都成标准件了? 2018-12-09
  • 2018中国双一流大学专业排行榜发布 清华大学位列第一 2018-12-09
  • 民生 —频道 春城壹网 七彩云南 一网天下 2018-12-08
  • 吐鲁番哈密瓜飘香疆外 2018-12-08
  • 华谊兄弟:《手机2》正常拍摄中 影片直指人心影片华谊兄弟-大陆 2018-12-08
  • 《这就是铁甲》迎来总决赛 郑爽放手一搏 2018-12-07
  • 高级需求不是物质需求,而是精神需求。你可能理解不了,为什么方志敏们面对高官,厚禄的诱惑而其志不改。 2018-12-07
  • 西媒曝“特金会”细节与即兴时刻:两人对视13秒 2018-12-07
  • 壮观!150余位画师共绘梵高《星月夜》 2018-12-06
  • 加大对遗产地生态保护修复力度 2018-12-06
  • 512| 946| 1000| 539| 11| 200| 750| 651| 460| 218|